

Fish Metabolism Breakdown

- When the fish consume feed to grow and support their metabolism, the feed is broken down into:
 - Fecal solids
 - Ultimately converted into ammonia and CO₂
 - Urea
 - Ultimately converted into ammonia-nitrogen
 - Carbon Dioxide
 - Elevated levels toxic at low DO
 - Ammonia nitrogen

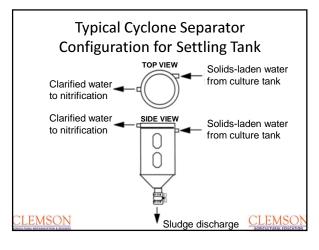
Elevated levels toxic, toxicity affected by pH
 EMSON

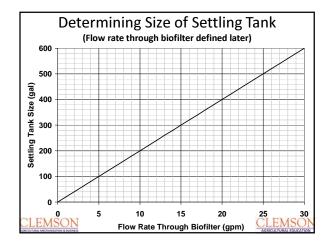
CLEMSO

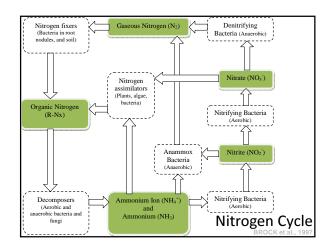
Fecal Solids Classifications

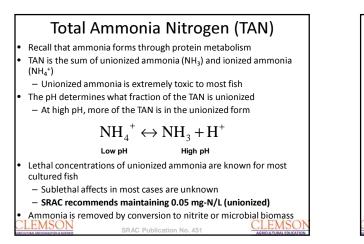
· Settleable solids

- Easy to remove with settling tank
 Should be removed from all systems (except extensive)
- Suspended solids


EMSON


- Must be removed with mechanical filtration
- Removal only necessary in intensive systems
- Floatable and dissolved solids


 Must be removed via foam fractionation
 - Removal may be required in intensive systems and likely required in super-intensive systems



Nitrate Nitrogen (NO₃)

- Not of direct concern in aquaculture
 - Most species of fish can tolerate extremely high levels of nitrate (>200 mg/L)
- Nitrate is formed from the oxidation of nitrite
- It can be removed by denitrification
 - Conversion to nitrogen gas (N₂)
 - Requires anaerobic conditions
 - Regenerates alkalinity

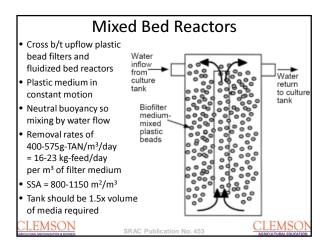
```
CLEMSON
```

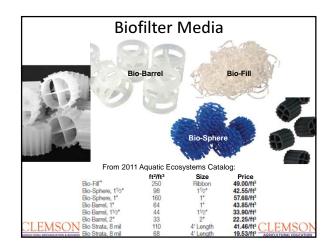
```
CLEMSON
```

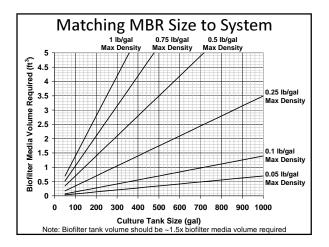

CLEMSO

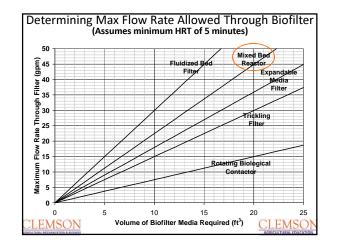
Attached Growth Biofiltration

- Uses media with high surface area to volume ratio — Nitrifying bacteria attach to media and grow there
 - Gravel, sand, plastic beads, plastic rings, plastic plates
- As ammonia- and nitrite-laden water pass through the filter, the nitrogen is oxidized to nitrite and nitrate by the nitrifying bacteria
 - Nitrosomonas convert NH₃ to NO₂
 - Nitrobacter convert NO₂ to NO₃

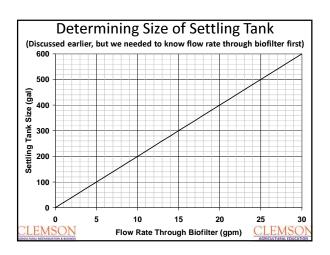

CLEMSON

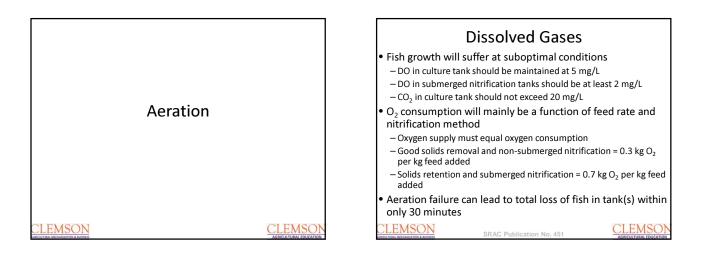

CLEMSON AGRICULTURAL EDUCATION

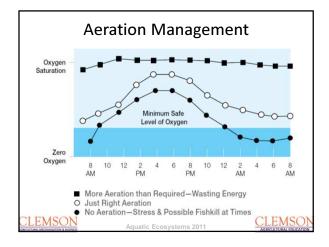

Common Biofilter Technologies

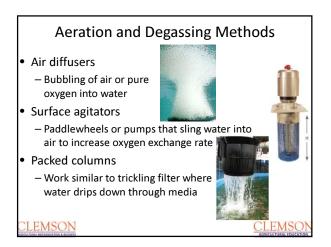

- Rotating biological contactor
 - Medium rotates on shaft in and out of water
- Trickling filter
 Water trickles down through medium
- Expandable media filter - Same bead filters discussed in DOC removal
- Fluidized bed reactor
 - Upflow suspends sand for colonization
- Mixed bed reactor
 - Water flows through plastic beads

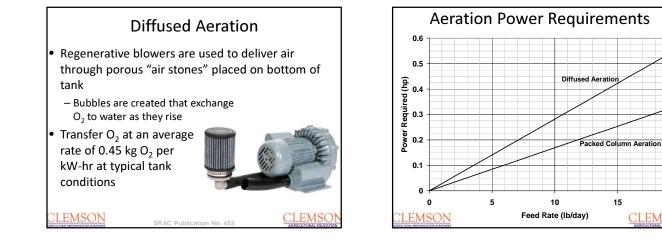
SRAC Publ

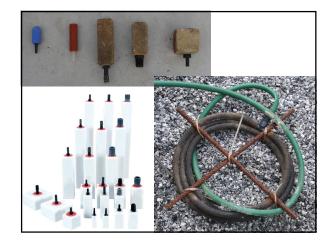


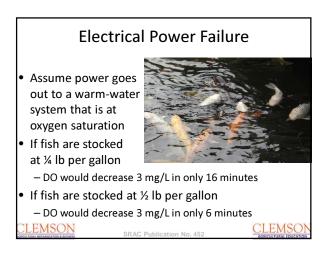






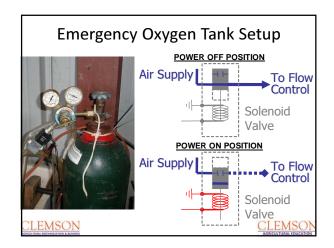




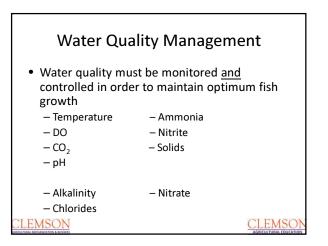

20

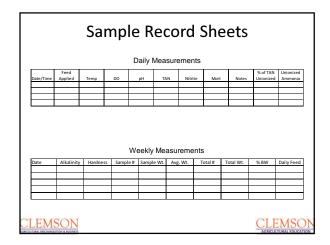
		aι	er	Ы	٥w	/er	Sp	pecifi	catio	ons
Mod				Inches		Max	•	Running Watts Input @	Price (Including	
		0"	30"	40"	50"	Duty	Нр	Inches Water	(including Filter)	
		ı3	3	-	_	34"	1/8	198/20*	\$ 488.58	
S21	00 2	27	19	7	_	43"	1/3	377/30"	537.60	
S31	00 3	34	28	21	16	56"	1/2	471/30"	578.65	
S31	30 3	34	28	21	16	56"	1/2	410/30"	597.22	
S41	00 7	0	65	53	36	58*	1	971/40"	704.63	
S43	80 7	0	65	53	36	58"	1	860/40*	706.77	
S45	0 1	10	100	90	80	65"	11/2	1.430/40"	944.85	
S45	53 O 1	10	100	90	80	65"	11/2	1,500/40"	944.85	
S51	0 13	35	120	110	100	65"	21/2	1,760/40*	1,015.38	
\$53	80 13	35	120	110	100	65"	21/2	1,750/40"	983.48	
S61	0 19	90	180	165	-	45"	21/2	2.600/40"	1,380,33	
S63	80 19	90	180	165	160	80"	31/2	3,260/60"	1,289.40	
S63	100 19	90	180	165	160	75"	31/2	3,400/60"	1,402.03	
S65	510 19	90	180	165	160	100"	5	3,710/80*	1,479.40	
S65	53 O 19	90	180	165	160	110"	5	3.520/80"	1,486,80	
\$56	6 12	20	120	118	117	280"	6	4,000/150"	2,206.06	
S69	0 20	50	245	230	210	110"	51/2	4,190/60"	1,981.12	
\$73	O 39	90	375	350	330	125"	10	7,640/80"	2,400.00	
254	10 7	78	74	70	61	110"	1+1	800/80"	-	
S15	6	50	640	630	610	125*	15	11,000/80*	5,064.91	
S18		20	710	690	650	105"	18	12,000/80"	4,696.92	
S18		10	405	400	395	200"	18	12,000/80"	4,696.92	
\$30			1,230	1,200	1,190	125*	30	20,000/80*	8,898.22	
S30	S 68	50	640	630	625	225"	30	20,000/80*	8,898.22	
FMSON	V.								CI	EMSC

A	•			osyst ecific	tems cation	s	
ASI-3 ASI-5	Ler in 2 3	ngth cm 5 7.6	aes 5 8	Avg. cfm .2 .3	Each \$ 3.05 4.20	20+ 2.75 3.78	
ASI-8 ASI-15	3 6	7.6 15	10 14	.35 .5	6.06 10.37	5.45 9.33	
ASI-23 ASI-30	9 12	23 30	20 27	.75 1.0	14.82 20.26	13.34 18.24	
CLEMSON EXECUTIVEAL MECHANICATION & BUSINESS		Aqua	tic Ecosy	stems 2011	l		

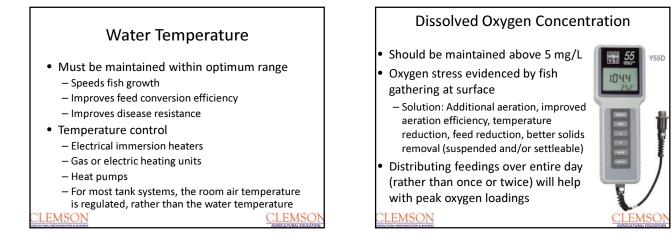


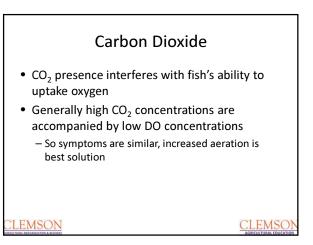
Plan for Power Failure


- Standby electrical generation on automatic transfer switch
- Oxygen bottles on electrical solenoid valves

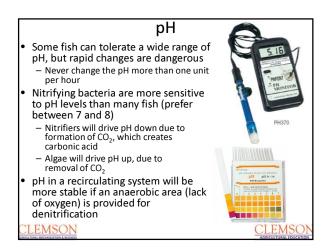

 Automatically initiate flow of oxygen when power is removed
- Phone alarm systems to alert operator of power failure

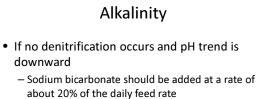
CLEMSON





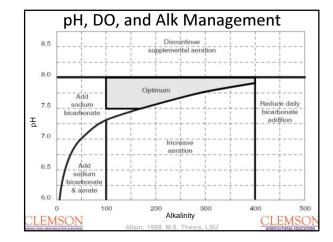
Trout Hybrid Striped Bass Tilapia Goldfish/Koi Shrimp (Freshwater) Shrimp (Saltwater) Minnows Shiners Tropical Fish (Freshwater)	70- 75- 65- 68- 60- 60-	Temp -68°F/7-20°C -85°F/21-29°C -90°F/24-32°C -75°F/18-24°C -80°F/20-27°C -75°F/16-24°C -75°F/16-24°C -84°F/22-29°C	D.0. mg/L 5-12 4-10 3-10 4-10 4-10 4-10 4-10 4-10	pH Units 5.5-8 6-8 6-8 6-8 6-8 6-8 6-8 6-8 6-8	50-250 50-250 50-250 60-100
Trout Hybrid Striped Bass Tilapia Goldfish/Koi Shrimp (Freshwater) Shrimp (Saltwater) Minnows Shiners Tropical Fish (Freshwater)	CO2 mg/L 0-20 0-25 0-30 0-25 0-20 0-15 0-25 0-20	Un-Ionized Ammonia mg/L 002 003 004 008 005 001 003 003 003	Nitrite mg/L 02 08 08 06 09 01 06 09	Hardness mg/L 50-350 50-350 50-350 50-350 60-250 50-350 50-350 50-350	Chloride mg/L 0-1,500 0-5,000 0-2,000 0-1,500 13,000-18,000 0-2,500 0-2,500
CLEMSON EDECUTIVAL MICHANIZATION & BUSINESS	A	quatic Ecosyste	ms 2011		

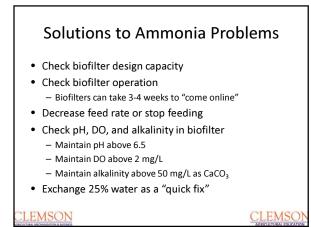

pH and Alkalinity

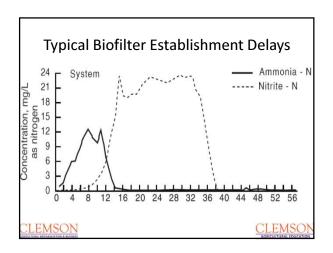

- pH is measure of hydrogen ion (H⁺) concentration
 - Neutral pH is 7; lower is acidic; higher is basic
- Alkalinity is measure of water's capacity to neutralize acidity
 - Bicarbonate (HCO₃⁻) and carbonate (CO₃⁻)
- Nitrification produces acid (H⁺), which combines with bases

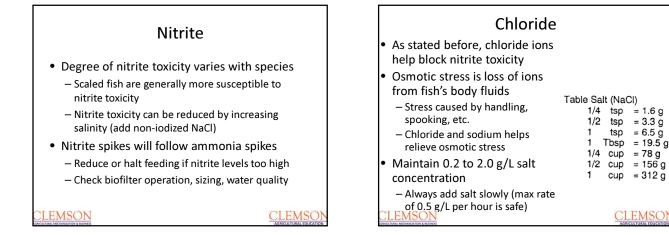
SRAC Publication No. 451

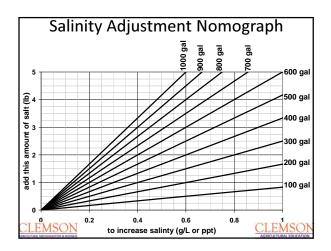
- Alkalinity is therefore consumed and pH will drop, potentially affecting fish health
- Alkalinity replacement methods:
- (1) Direct addition (sodium bicarbonate is best)
- (2) Establishment of anaerobic zone for denitrification


CLEMSON

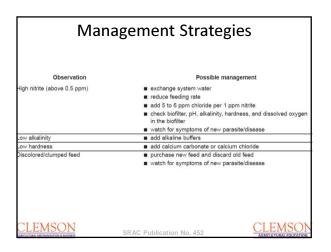

- Alkalinity and hardness should be maintained at least 50 to 100 mg/L as calcium carbonate
- Calcium should be added to adjust hardness

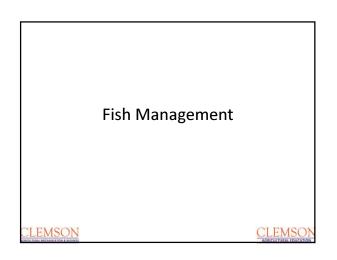

CLEMSON




	Perce	enta	ge
Ammonia	pН	16	1
	7.0	0.30	0.
• Ammonia ovists in two forms ionized (NH t) and	7.2	0.47	0.
	7.4	0.74	0.
unionized (NH ₃)		1.17	1.
 The unionized form is toxic to fish 			2.
– The proportion of these is dictated by temperature and pH			5.
 Ammonia toxicity slows growth, causes tissue 	8.6	0.00	
damage and death	8.8	15.76	
	9.0	22.87	25.
 Monitor ammonia daily 	9.2	31.97	35.
 Manage feed, waste, and biofilter properly for long-term 	9.4	42.68	46
	9.6	54.14	
	9.8		
 Manage pH for short term ammonia control 	10.0		
CLEMSON CLEMSON ADDRESS ADDRES		82.45	84.
	 Ammonia exists in two forms: ionized (NH₄⁺) and unionized (NH₃) The unionized form is toxic to fish The proportion of these is dictated by temperature and pH 	PH 7.0 • Ammonia exists in two forms: ionized (NH ₄ ⁺) and 7.2 unionized (NH ₃) - The unionized form is toxic to fish - The proportion of these is dictated by temperature and pH 8.2 Ammonia toxicity slows growth, causes tissue damage, and death • Monitor ammonia daily - Manage feed, waste, and biofilter properly for long-term ammonia control	 Ammonia exists in two forms: ionized (NH₄⁺) and Ammonia exists in two forms: ionized (NH₄⁺) and T.0 0.30 7.2 0.47 7.4 0.74 7.4 0.74 7.6 1.17 7.8 1.84 8.0 2.88 The proportion of these is dictated by temperature and pH 8.4 6.93 Ammonia toxicity slows growth, causes tissue 6.8 10.56 4.693 Monitor ammonia daily 9.2 31.97 Manage feed, waste, and biofilter properly for long-term ammonia control 9.6 54.14 9.6 54.14

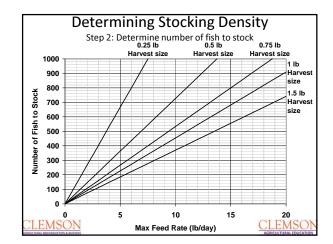
Perce	enta	ge o	f An		nia		nion	ized	Form
pН	16	18	20	22	24	26	28	30	32
7.0	0.30	0.34	0.40	0.46	0.52	0.60	0.70	0.81	0.95
7.2	0.47	0.54	0.63	0.72	0.82	0.95	1.10	1.27	1.50
7.4	0.74	0.86	0.99	1.14	1.30	1.50	1.73	2.00	2.36
7.6	1.17	1.35	1.56	1.79	2.05	2.35	2.72	3.13	3.69
7.8	1.84	2.12	2.45	2.80	3.21	3.68	4.24	4.88	5.72
8.0	2.88	3.32	3.83	4.37	4.99	5.71	6.55	7.52	8.77
8.2	4.49	5.16	5.94	6.76	7.68	8.75	10.00	11.41	13.22
8.4	6.93	7.94	9.09	10.30	11.65	13.20	14.98	16.96	19.46
8.6	10.56	12.03	13.68	15.40	17.28	19.42	21.83	24.45	27.68
8.8	15.76	17.82	20.08	22.38	24.88	27.64	30.68	33.90	37.76
9.0	22.87	25.57	28.47	31.37	34.42	37.71	41.23	44.84	49.02
9.2	31.97	35.25	38.69	42.01	45.41	48.96	52.65	56.30	60.38
9.4	42.68	46.32	50.00	53.45	56.86	60.33	63.79	67.12	70.72
9.6	54.14	57.77	61.31	64.54	67.63	70.67	73.63	76.39	79.29
9.8	65.17	68.43	71.53	74.25	76.81	79.25	81.57	83.68	85.85
10.0	74.78	77.46	79.92	82.05	84.00	85.82	87.52	89.05	90.58
10.2	82.45	84.48	86.32	87.87	89.27	90.56	91.75	92.80	93.84
LEMSO	NUMESS		SRA	C Publi	cation N	lo. 452		0	



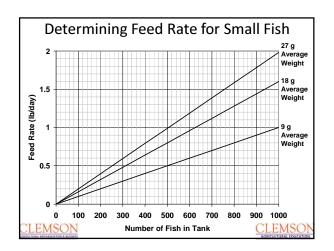


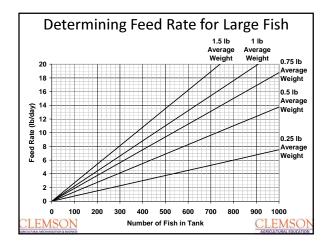
Management Strategies					
Observation .ow dissolved oxygen (less than 5 ppm)	Possible management increase aeration stop feeding until corrected watch for symptoms of new parasite/disease				
High carbon dioxide (above 20 ppm)	add air stripping column increase aeration watch for symptoms of new paraside/disease				
.ow pH (less than 6.8)	 add alkaline buffers (sodium bicarbonate, etc.) reduce feeding rate check ammonia and nitrite concentarations 				
ligh ammonia (above 0.05 ppm as un-ionized)	exchange system water reduce feeding rate check börlter, pH, alkalinity, hardness, and dissolved oxygen in the biofilter watch for symptoms of new parasite/disease				
CLEMSON SRAC	2 Publication No. 452				

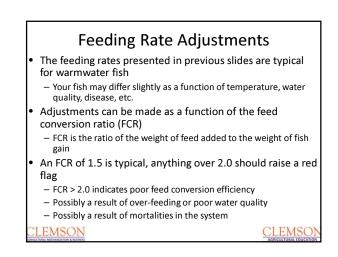
Stocking: Tempering

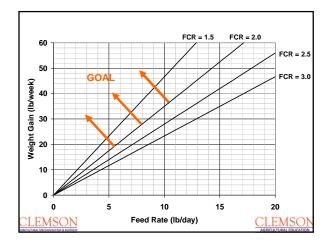

- Fish are generally hauled in cold water
- They should be slowly acclimated to system temperature to avoid shock
- Temperature changes of more than $5^{\rm o}\,{\rm F}$ at one time
- should be avoided – If temperature difference is more than 5° F, bring them to temperature no faster than 1° F per 20-30 minutes

EMSON



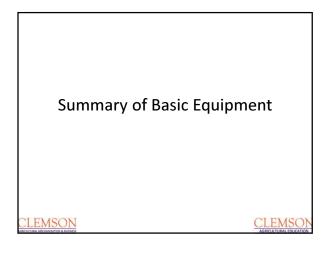


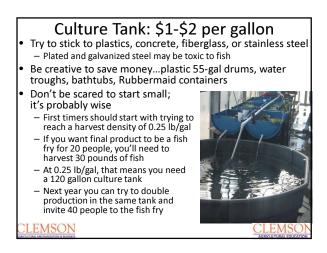

Determining Stocking Density Step 1: Determine biofilter's capacity to process feed 20 Fluidized Beg Filter 18 Mixed Bed Reactor 16 Feed Rate (Ib/day) 8 0 1 1 1 Expandable Media Filter Мах 6 Trickling Filter Rotating Biological Contacto 2 0 5 10 15 0 20 EMSON EMSC Volume of Media in Filter (ft³)

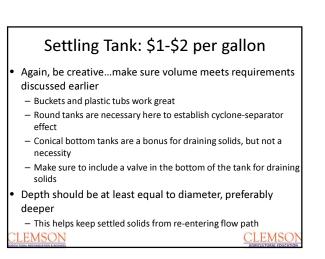


Feeding Rates							
Feeding the proper amount is critical							
 Overfeeding results in poor water quality due to solids accumulation 							
 Fish are fed proportional to their body weight 	Avera weight p (Ibs.)		Body weight consumed (%)				
 Small fish eat a large % 	0.02	9	5.0				
body weight per day	0.04	18	4.0				
 Large fish eat a small % 	0.06	27	3.3				
body weight per day	0.25	113	3.0				
 Feed only what the fish will consume in 5-10 minutes 	0.50	227	2.75				
 Better method is to feed 	0.75	340	2.5				
based on the recommended	1.0	454	2.2				
percent body weight per day	1.5	681	1.8				
CLEMSON CLEMSON							

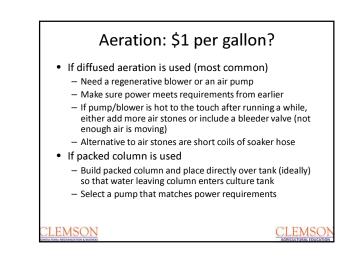







Observation	Possible cause	Possible management		
Tish:	1 oconsio dadoo	i oconno managomone		
Excitable/darting/erratic swimming	 excess or intense sounds/lights 	reduce sound level/pad sides of tank/reduc light intensity		
	parasite	examine* fish with symptoms		
	 high ammonia 	check ammonia concentration		
Flashing/whirling	parasite	examine fish with symptoms		
Discolorations/sores	parasite/bacteria	examine fish with symptoms		
Bloated/eyes bulging out	 virus or bacteria 	examine fish with symptoms		
	 gas bubble disease 	check for supersaturation and examine fish with symptoms		
ying at surface/not swimming off	parasite	examine fish with symptoms		
	Iow oxygen	check dissolved oxygen in tank		
	high ammonia or nitrite	check ammonia and nitrite concentrations		
	 bad feed 	check feed for discoloration/clumping and check blood of fish		
	 high carbon dioxide 	check carbon dioxide level		
Crowding around water inflow/aerators	Iow oxygen	check dissolved oxygen in tank		
	parasite/disease	examine fish with symptoms		
	high ammonia or nitrite	check ammonia and nitrite concentrations		
	 bad feed 	check feed for discoloration/clumping and check blood of fish		
CLEMSON	SRAC Publication No.	452 CLEMSO		

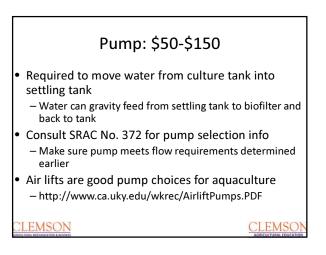
Observation	Possible cause	Barra Hala and an and an and
Observation Gulping at surface	Possible cause Iow oxygen	Possible management check dissolved oxygen in tank
Suprigrat surrace	parasite/disease	examine fish with symptoms
	 high ammonia or nitrite 	check ammonia and nitrite concentrations
	high carbon dioxide	check carbon dioxide level
	bad feed	check feed for discoloration/clumping and check blood of fish
Reducing feeding	Iow oxygen	check dissolved oxygen in tank
	parasite/disease	examine fish with symptoms
	high ammonia or nitrite	check ammonia and nitrite concentrations
	bad feed	check feed for discoloration/clumping and check blood of fish
Stopping feeding	Iow oxygen	check dissolved oxygen in tank
	parasite/disease	examine fish with symptoms
	high ammonia or nitrite	check ammonia and nitrite concentrations
Discolored blood – Brown	 high nitrite 	examine fish with symptom; add 5 to 6 ppm chloride for each 1 ppm nitrite; purchase new feed and discard old feed
Clear (no blood)	 vitamin deficiency 	examine fish with symptom; check feed for discoloration/clumping; purchase new feed and discard old feed
Broken back or "S" shaped backbone	 vitamin deficiency 	examine fish with symptom; purchase new feed and discard old feed
CLEMSON EGECULTURAL MICHANIZATION & BUSINESS	SRAC Publication No.	452 CLEMSON



Biofilter Tank: \$1-\$2 per gallon

- Biofilter tank is simply a tank to
- contain the biofilter media
- Some filter tanks can be made with plastic tubs, short lengths of large diameter PVC pipe, buckets, etc.
- Flow should enter from top or bottom and exit through opposite end
 - This prevents short-circuiting

LEMSON



Scales

- Platform-type scales specifically for aquaculture (such as those made by Ohaus) are ideal
- But they are expensive (\$150 and up)
- A good alternative is a hanging electronic fishing scale - Must fabricate a basket to hang from scale
- For small weight fish, add several to basket and divide weight by number of fish for average
- Be sure to tare or subtract off for basket weight - Only keep fish out of water long enough to weigh them
- Fish can be weighed in water if care is taken that water does not slosh out
- Helps reduce stress to fish
- You will also need to use a scale for weighing feed
- Small quantities may need to be measured by volume if resolution on scale isn't good enough **EMSON**

CLEMSO

Water Quality Test Kit: \$200

- · Reagents are best...test strips not very accurate or economical
 - Look for "LaMotte" and "Hach"
- Needs to include tests for:
 - Ammonia (measure daily)
 - Nitrite (measure daily)
 - Nitrate (measure weekly or every two weeks)
 - Hardness (weekly or every two weeks)
 - Alkalinity (weekly or every two weeks)
- If you do not have funds for a pH meter, your kit
- should also include pH tests

LEMSON

CLEMSC

pH Meter: \$100-\$250

- pH meters are relatively inexpensive
- Be sure to get one that is designed for measuring water pH, not soil pH
- Follow calibration instructions
- Buffer solutions can be ordered from any aquaculture supplier
- Measure pH daily

CLEMSON

CLEMSC

DO Meter: \$300-\$700

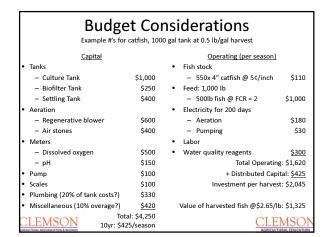
- Oxygen should be measured several times per day if possible
- This one's expensive, but there's really no good alternative
 - YSI is a reputable name in DO meters
- It is possible to titrate sample for DO concentration, but it is very slow
- DO is one of the most critical WQ parameters and cannot be overlooked
- Read instructions with meter and follow all maintenance and calibration procedures
- Take good care of it, you're farming blind without it

CLEMSON

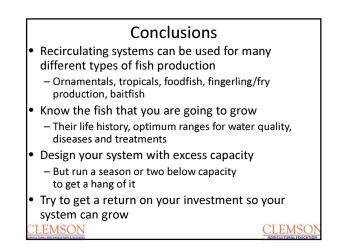
Various Other Important Stuff

- Nets
- Thermometer
 - Floating type is cheap and accurate
- DO meter will likely include temp. probe
- Feed: \$1-\$2 per lb
- For most fish, floating fish pellets available at local feed/seed store is suitable
- Fish smaller than 0.25 lb need crumbled feed or mash
 FMSON

Tight-sealing trash can to store feed in
Automatic feeders


- Really just a luxury
 If you get them, the type
- that scatters feed is best Brushes, scouring pads
- Always make sure that cleaning tools are not treated with disinfectants, algaecides, or fungicides

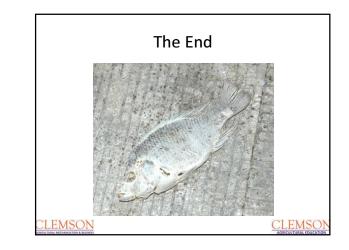
CLEMSON


System Sizing Example 1,000 gal culture tank at 0.5 lb/gal harvest density Yields 500 lb of fish at harvest 7 ft³ biofilter media required => 10.5 ft³ tank = 80 gal Treatment flow rate range: 2-15 gpm, assume 10 gpm 200 gal settling tank required (20 min HRT) Max feed rate allowable = 9 lb/day (based on filter media) Minimum 0.25 hp blower required (based on max feed) Sweetwater S21 blower provides 19 cfm at 30" water 19x 1.0 cfm airstones are required

CLEMSON

CLEMSO

Closing Remarks	


Finally

Include emergency aeration in your system!!!!

- Try to have back up pumps and blowers on hand
- Monitor water quality daily, maintain a management record, and plot the data so you can analyze trends
- Reduce fish stress whenever you can
- Aquaculture can be very fun and educational
 - Don't over-do it in the beginning or you $\underline{\mbox{will}}$ get burned out
 - Start small and work your way up
 - Experiment with different species
 - Visit commercial fish farms

CLEMSON

CLEMSON AGRICULTURAL EDUCATION

