Effects of Ground Speed and Conveyor Speed on Peanut Digging Losses

Kendall R. Kirk¹, James S. Thomas¹, Andrew C. Warner², and Hunter F. Massey³

¹ Edisto Research & Education Center, Clemson University, Blackville, SC
² Clemson Cooperative Extension, Agronomic Crops Team, Hampton, SC
³ Agricultural Mechanization & Business, Clemson University, Clemson, SC

2017 SC Peanut Growers’ Meeting
Santee, SC
January 26, 2017

INTRODUCTION

Objectives (Virginia type peanuts)

- Effects of conveyor speed on digging losses
 - 80%
 - 90% Lagging
 - 100% Equal to ground speed
 - 110% Leading
 - 120%

- Effects of ground speed on digging losses
 - 2 mph
 - 3 mph
 - 4 mph
 - 5 mph

Diggers used in study

General site description

- Sand to loamy sand
- Soil Moisture: 4 ± 1% VMC

Amadas (Champs)
KMC (Wynne)

CONVEYOR SPEED TESTS
Conveyor speed: Literature

- Amadas
 - Set conveyor to match tractor speed (digital readout)
 - Excessive dirt in windrow = Conveyor too slow?
 - Conveyor stalls excessively = Conveyor too slow?
- KMC
 - Vine flow synchronized with ground speed and conveyor speed
- Bader, UGA
 - Chain speed slightly faster than forward speed to avoid pileup of vines ahead of pickup
- Roberson, NCSU
 - Synchronize to avoid dragging and snatching of plants
 - Optimum shaker speed is slightly faster than ground speed

Calculating conveyor speed

- Determine length of conveyor: (Rod Spacing) x (# of rods) ...convert to feet
- Determine ground speed in ft/min:
 \[
 \text{ft/min} = \text{(mph)} \times 88
 \]
- Determine conveyor speed required:
 \[
 \text{Conveyor Speed [rev/min]} = \frac{\text{Ground Speed [ft/min]}}{\text{Conveyor Length [ft/rev]}}
 \]
 \[
 \text{Conveyor Cycle Time [sec/rev]} = \frac{60 \times [\text{sec/min}]}{\text{Conveyor Speed [rev/min]}}
 \]

Conveyor Speed Tests: Ground Speed was 3 mph

- **Conveyor Speeds**
 - 0.8 x
 - 0.9 x
 - 1.0 x
 - 1.1 x
 - 1.2 x

Amadas Conveyor Speeds at 3mph

- 80%
- 90%
- 100%
- 110%
- 120%

Amadas Conveyor Speed Tests: Champs

- **Mechanical Digging Losses lb/ac**
 - 80pct: 191
 - 90pct: 201
 - 100pct: 187
 - 110pct: 212
 - 120pct: 327
KMC Conveyor Speeds at 3mph

80% 90% 100% 110% 120%

KMC Conveyor Speed Tests: Wynn

<table>
<thead>
<tr>
<th>Losses (lb/ac)</th>
<th>80pct</th>
<th>90pct</th>
<th>100pct</th>
<th>110pct</th>
<th>120pct</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>427</td>
<td>362</td>
<td>511</td>
<td>444</td>
<td>734</td>
</tr>
</tbody>
</table>

Ground Speed Tests: Conveyor Speed = Ground Speed

Ground speed: Literature

- Amadas: “Starting speed” 2.5 – 3 mph
- KMC: 3 – 3.5 mph
 - Too fast causes bunching
 - Too slow pulls vines apart, pulling off peanuts
- Bader, UGA: 3.5 – 5 mph
- Roberson, NCSU
 - Heavy pod losses at ground speeds in excess of 4 mph

Amadas Ground Speeds at 100% Conveyor Speed

- 2 mph
- 3 mph
- 4 mph
- 5 mph
Amadas Ground Speed Tests: Champs

- **Mechanical Digging Losses, lb/ac**
 - 2 mph: 164
 - 3 mph: 187
 - 4 mph: 463
 - 5 mph: 652

Amadas Digging Losses as Function of Ground Speed

- **Slope = 232 lb/ac loss per mph above 3 mph**

Amadas Economic Analysis

- **6-row Digger Costs ($/ac)**
 - Revenue: $30/ac
 - Digging Costs: $400/ton

KMC Ground Speeds at 100% Conveyor Speed

- **KMC Digging Losses as Function of Ground Speed**
 - **Slope = 274 lb/ac loss per mph above 2 mph**
KMC Economic Analysis

Field Capacity for Various Digging Speeds

4-Row Diggers

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>Capacity (ac/hr)</th>
<th>Time (hr/10 ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>2.5</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>3.9</td>
<td>2.6</td>
</tr>
<tr>
<td>3.5</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>5.2</td>
<td>1.9</td>
</tr>
<tr>
<td>4.5</td>
<td>5.9</td>
<td>1.7</td>
</tr>
<tr>
<td>5</td>
<td>6.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

6-Row Diggers

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>Capacity (ac/hr)</th>
<th>Time (hr/10 ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.9</td>
<td>2.6</td>
</tr>
<tr>
<td>2.5</td>
<td>4.9</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>5.9</td>
<td>1.7</td>
</tr>
<tr>
<td>3.5</td>
<td>6.9</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>7.8</td>
<td>1.3</td>
</tr>
<tr>
<td>4.5</td>
<td>8.8</td>
<td>1.1</td>
</tr>
<tr>
<td>5</td>
<td>9.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Conclusions

- Best to lag (>80%) or match conveyor speed to ground speed
- Digging losses increase with ground speed: 230-270 lb/ac per mph increase (this test)
- Digging machinery costs decrease with ground speed
- Optimum ground speed for profitability minimizes sum of digging loss costs and digging machinery costs
 - Amadas Belt Conveyor / Champs = 3 mph
 - KMC Chain Conveyor / Wynn = 2 mph

Acknowledgments

- Clemson Ag Mech & Business Undergraduate Program
- Justin Hiers, Perry Loftis, Reid Miller