COMMERCIALLY AVAILABLE TECHNOLOGIES FOR HAY

Available technologies for hay

- Bale Weighing
- Moisture Measurement
- Yield Mapping
- Automated Preservative Applicators
- Continuous Round Baler

- Trimble S1100A - Bale Weighing
 - Indicator
 - Mounted in the cab to clearly display lifted weight
 - Transducer
 - Connected to the hydraulic system to measure pressure

- Onboard Scales - Bale Weighing
 - OEM Providers
 - CNH
 - Krone
 - Vermeer
 - Aftermarket kits
 - Tara Systems (Small Square Bales)
 - Scale-Tec

- AgraTronix BHT-2 - Moisture Measurement
 - Small square and round
 - Retail: $380
 - Moisture Range: 8% to 40%
AgraTronix BHT-2 - Moisture Measurement

Core Moisture: 13.5%

Harvest Tec Products (via AgCo)

- Rotating star wheels
- Measure moisture content
- Automatic preservative applicator control
- Estimate tonnage weight (large square balers only)

Retail: $4000 + $3,000

CLEMSON ROUND BALE WEIGHING SYSTEM RESEARCH & DEVELOPMENT
How the Clemson bale weighing system works

- Pressure transducer on bale kicker
- Records hydraulic pressure as bale is discharged
- Correlates peak(s) in hydraulic pressure to bale weight

Raw Kicker Data

Net Wrap Only: Kicker Predictions

Crop Yield Maps

- Yield monitoring
 - Available for cotton, corn, and grain
 - 2nd among PA technologies (Winstead et al.)
 - Can be used to define management zones
 - Evaluate achievement of yield goals
 - Adjust management strategy
- Cost-Benefit or ROI
 - Difficult to determine
 - Case-by-case basis
 - 2% profit increase reasonable

HAY YIELD MONITORING

Yield Monitor Commercial Availability by Acreage (1,000 ac)
Yield Monitor Commercial Availability by Crop Value ($1,000)

Top 6 U.S. Crops

Cotton, 5,206,928
Wheat, 61,346,924
Rice, 2,326,824
Soybeans, 25,083,774
Hay, 14,529,012
Corn for grain, 41,583,097

CLEMSON HAY YIELD MONITOR DEVELOPMENT

How the Clemson hay yield monitor works

• Tongue/throat mounted sensors measure windrow height on-the-go
• Window height multiplied by distance traveled to calculate windrow volume
• Windrow volume correlated to bale weight and/or bale count

Unique features of the Clemson hay yield monitor

• Adaptable to any baler
 – Round balers
 – Small square balers
 – Large square balers
• Multiple calibration capabilities
• Aftermarket retrofit or OEM option

Raw Sensor Data Across Bale

Window Height, in

Distance, ft
All 2014 Bales: Actual vs. Predicted Mass Flow

YIELD DATA AS FUNCTION OF IN-FIELD VARIABILITY

Bermudagrass: Actual vs. Predicted Mass Flow

Yield benefit of irrigation

Tift-85 1st Cutting: Irrigation Benefit = $22/ac
Tift-85 2nd Cutting: Irrigation Benefit = $8/ac

Age: 4.9 weeks Rainfall: 8.3 in Irrigation: 2.35 in

Irrigated
- 3.39 ton/ac
- Revenue: $327/ac
- Irr. Cost: $19/ac
- Returns: $318/ac

Non-Irrigated
- 3.25 ton/ac
- Revenue: $310/ac
- Returns: $310/ac

Tift-85 3rd Cutting: Irrigation Benefit = $4/ac

Age: 6.86 weeks Rainfall: 4.28 in Irrigation: 5 in

Irrigated
- 3.16 ton/ac
- Revenue: $421/ac
- Irr. Cost: $40/ac
- Returns: $381/ac

Non-Irrigated
- 2.83 ton/ac
- Revenue: $377/ac
- Returns: $377/ac

LESSONS LEARNED: NITROGEN TESTS
Nitrogen Strip Test Design

Yield Data from Nitrogen Test

Yield & Returns as Function of N Rate – Irrigated Only

PUTTING THE YIELD DATA TO WORK: DIRECTED PRESCRIPTION

The Clemson “Directed Prescription” System

The Clemson “Directed Prescription” System
How "Directed Prescription" Works: Idealized Concept

Returns as Function of Sand Content by N-Rate

Max Return by Sand Content Zone

N-Rate for Max Profit by Sand Content

VRA Nitrogen Directed Rx

YIELD MANAGEMENT ZONES: VARIABLE RATE NITROGEN Rx
Yield Management Zone Development

POTENTIAL FOR BENEFIT FROM VRA IN HAY

Benefit Potential from VRA-N in Hay

Questions? kirk2@Clemson.edu